

5.1: Atomic Mass Unit				
Atomic Mass is defined relative to Carbon -12 isotope				
12 amu is the mass of the ${}^{12}_{6}$ C isotope of carbon				
	Carbon -12 atom	=	12.000 amu	
	Hydrogen -1 atom	=	1.008 amu	
	Oxygen -16 atom	=	15.995 amu	
	Chlorine -35 atom	=	34.969 amu	

5.1: Atomic Mass - Natural Abundance				
We deal with the naturally occurring mix of isotopes , rather than pure isotopes				
Carbon has three natural isotopes				
Isotope	Mass (amu)	Abundance (%)		
¹² C	12.000	98.892		
¹³ C	13.00335	1.108		
¹⁴ C	14.00317	1 x 10 ⁻⁴		
Any shovelful of Carbon from living material will have a Naturally Occurring Abundance of 98.892% ¹² C, 1.108% ¹³ C and 0.0001% ¹⁴ C				

5.1: Atomic Mass - Relative Abundance					
How do we take into account the naturally occurring					
Abundances?					
according to their Relative Abundances					
	0		Relative		
Isotope	<u>Mass</u> (amu)	Abundance (%)	Abundance		
12 -			0.00000		
"C	12.000	98.892	0.98892		
¹³ C	13.00335	1.108	0.0108		
¹⁴ C	14.00317	1 x 10 ⁻⁴	1 x 10 ⁻⁶		
N.B. The % Abundance adds up to 100 The Relative Abundance adds up to 1					

5.1: Average Atomic Mass					
Isotope	Mass (amu)	Abundance (%)	Relative Abundance		
12 _C	12 000	08 802	0.98892		
¹³ C	13.00335	1.108	0.0108		
¹⁴ C	14.00317	1 x 10 ⁻⁴	1 x 10 ⁻ ⁰		
The Average Atomic Mass is given by:					
(<mark>0.98892</mark> x 12.000 amu) +					
(0.01108 x 13.	00335 amu) +			
(1 x 10 ° x 14.00317 amu) = <u>12.011 amu</u>					

5.2: How to Avoid Huge Numbers - Use moles!			
How does a chemist say how many ATOMS or MOLECULES she reacted?			
She talks of moles of Atoms or Molecules reacted			
1 mole = 6.022142×10^{23}			
Avogadro's Number (N _A)			
	11		

5.2: Calculations of molecular amounts

How many MOLECULES of nicotine ($C_{10}H_{14}N_2$) are there in an average cigarette (1.2 mg)?

Mass of nicotine = 1.2 mg = $1.2 \times 10^{-3} \text{ g}$

Molar mass of nicotine = $162.26 \text{ g.mol}^{-1}$ No. of molecules 1 mole = 6.02×10^{23} molecules.mol⁻¹

Step 1: Convert mass to moles using molar mass

no. of moles of nicotine = 1.2×10^{-3} g/ / 162.26 g/.mol⁻¹

= 7.4×10^{-6} moles of nicotine

