Topic 5: Stoichiometry - Chemical Arithmetic
Masses of some atoms:
${ }_{1}^{1} \mathrm{H}=1.6736 \times 10^{-24} \mathrm{~g} \quad{ }_{8}^{16} \mathrm{O}=2.6788 \times 10^{-23} \mathrm{~g}$
${ }_{92}^{238} \mathrm{U}=3.9851 \times 10^{-22} \mathrm{~g}$
Introducing.......the Atomic Mass Unit (amu)
1 amu $=1.66054 \times 10^{-24} \mathrm{~g}$

\qquad

5.1: Atomic Mass Unit	
Atomic Mass is defined relative to Carbon -12 isotope	
12 amu is the mass of t	sotope of carbon
Carbon -12 atom	12.000 amu
Hydrogen -1 atom	1.008 amu
Oxygen -16 atom	15.995 amu
Chlorine - 35 atom	34.969 amu

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.1: Atomic Mass - Natural Abundance		
We deal with the naturally occurring mix of isotopes, rather than pure isotopes		
Carbon has three natural isotopes		
Isotope	Mass (amu)	Abundance (\%)
${ }^{12} \mathrm{C}$	12.000	98.892
${ }^{13} \mathrm{C}$	13.00335	1.108
${ }^{14} \mathrm{C}$	14.00317	1×10^{-4}
Any shovelful Naturally $98.892 \%{ }^{12} \mathrm{C}$	bon from livi rring Abund $08 \%{ }^{13} \mathrm{C}$ an	rial will have a $01 \%{ }^{14} \mathrm{C}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.1: Average Atomic Mass			
Isotope	Mass (amu)	Abundance (\%)	Relative Abundance
${ }^{12} \mathrm{C}$	12.000	98.892	0.98892
${ }^{13} \mathrm{C}$	13.00335	1.108	0.0108
${ }^{14} \mathrm{C}$	14.00317	1×10^{-4}	1×10^{-6}
The Average Atomic Mass is given by:			
$(0.98892 \times 12.000 \mathrm{amu})+$			
$(0.01108 \times 13.00335 \mathrm{amu})+$			
$\left(1 \times 10^{-6} \times 14.00317 \mathrm{amu}\right)=12.011 \mathrm{amu}$			

5.1: Atomic and Molecular Mass
You can calculate the mass of any compound from the sum of the atomic masses from the periodic table.
Example: Molecular Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$
2 Hydrogen atoms

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.1: Formula Mass
 What is the formula mass of :
 (Calcium nitrate tetrahydrate)

 $(1 \times 40.08 \mathrm{amu})+(2 \times 14.01 \mathrm{amu})$
 $+(8 \times 1.01 \mathrm{amu})+(10 \times 16.00 \mathrm{amu})$
 $=236.18 \mathrm{amu}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
${ }^{8}$

5.1: Formula Mass vs. Molecular Mass
 Use MOLECULAR MASS when talking about MOLECULES
 \qquad
 e.g. $\mathrm{CO}_{2} \quad \mathrm{H}_{2} \mathrm{O} \quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
 \qquad
 Use FORMULA MASS when talking about
 \qquad IONIC COMPOUNDS
 e.g. $\mathrm{NaCl} \quad \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{CaO}$
 BUT the two terms are basically interchangeable
 \qquad
 \qquad

5.2: How to Avoid Huge Numbers

Recall the introduction of Atomic Mass Units

```
1 amu = 1.66054 x 10-24 g
```

This avoids working with ridiculously small masses

How to avoid the problem of counting huge numbers of molecules / atoms ?

[^0]

5.2: Molar mass

Examples:

1 molecule of KCl has molecular mass of 74.55 amu .,

1 mol of KCl has a mass of 74.55 g ., and contains 6.02×10^{23} molecules of KCl .

1 mole of $\mathrm{H}_{2} \mathrm{O}$ has a mass of ? g
\qquad

5．2：Calculations of molar amounts

How many moles of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ are there in a schooner of beer？
（The average schooner contains 20.8 g ethanol）
Mass of ethanol $=20.8 \mathrm{~g}$
Molar mass of ethanol $=46.08 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
no．of moles of ethanol $=20.8 \mathrm{~g} \div 46.08 \frac{\mathrm{~g}}{\mathrm{~mol}}$
\qquad
\qquad
\qquad

$$
=20.8 \not 又 \times \frac{1}{46.08} \frac{\mathrm{~mol}}{\not 又}
$$

$$
=0.451 \mathrm{~mol}
$$

no．of moles $=$ mass $(\mathrm{g}) /$ molar mass $\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$

> 5.2: Calculations of molar amounts How many moles of caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ are there in a tin of Red Bull? (1 tin contains 80 mg of caffeine) $\begin{aligned} & \text { Mass of } \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}=80(\mathrm{mg}=0.08 \mathrm{~g} \\ & \text { Molar mass of } \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}=194.22(\mathrm{~g} \cdot \mathrm{~mol}-1) \\ & \text { no. of moles of caffeine }=0.08 \mathrm{~g} \div 194.22 \frac{\mathrm{~g}}{\mathrm{~mol}} \\ &=0.08 \not \subset \times \frac{1}{194.22} \frac{\mathrm{~mol}}{\not 又} \\ &=4 \times 10^{-4} \mathrm{~mol} \text { caffeine }\end{aligned}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5．2：Calculations of molecular amounts

How many MOLECULES of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ are there in a schooner of beer？
（The average schooner contains 20.8 g ethanol） Mass of ethanol $=20.8 \mathrm{~g}$
Molar mass of ethanol $=46.08 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$=0.451 \mathrm{~mol}$
No．of molecules 1 mole $=6.02 \times 10^{23}$ molecules． mol^{-1}
no．of molecules of ethanol
$=0.451 \mathrm{~m} / \mathrm{l} \times 6.02 \times 10^{23} \frac{\text { molecules }}{\text { m／fl }}$
$=2.72 \times 10^{23}$ molecules of ethanol
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.2: Calculations of molecular amounts

How many MOLECULES of nicotine $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}\right)$ are there in an average cigarette $(1.2 \mathrm{mg})$?
Mass of nicotine $=1.2 \mathrm{mg}=1.2 \times 10^{-3} \mathrm{~g}$
Molar mass of nicotine $=162.26 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
No. of molecules 1 mole $=6.02 \times 10^{23}$ molecules. mol^{-1}

Step 1: Convert mass to moles using molar mass
\qquad
\qquad
\qquad
no. of moles of nicotine

$$
\begin{aligned}
& =1.2 \times 10^{-3} \mathrm{~g} / 162.26 \mathrm{~g} . \mathrm{mol}^{-1} \\
& =7.4 \times 10^{-6} \mathrm{moles} \text { of nicotine }
\end{aligned}
$$

5.2: Calculations of molecular amounts

How many MOLECULES of nicotine $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}\right)$ are there in an average cigarette $(1.2 \mathrm{mg})$?
$\left.\begin{array}{l}\text { Mass of nicotine }=1.2 \mathrm{mg}=1.2 \times 10^{-3} \mathrm{~g} \\ \text { Molar mass of nicotine }=162.26 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\end{array}\right\}=7.4 \times 10^{-4} \mathrm{~mol}$
\qquad
\qquad
No. of molecules 1 mole $=6.02 \times 10^{23}$ molecules. mol^{-1}

Step 2: Convert moles to molecules using Avogadro's number \qquad
no. of molecules of nicotine
$=7.4 \times 10^{-6} \mathrm{~m} / \mathrm{l} \times 6.02 \times 10^{23} \mathrm{molecules} . \mathrm{m} \mathrm{ml}^{-1}$
$=4.4 \times 10^{18}$ molecules of nicotine
\qquad
\qquad
\qquad

[^0]: 5.2: A mole is 6.02×10^{23} of anything

 The NUMBER is constant, NOT the MASS

